Functional single-layer graphene sheets from aromatic monolayers.

نویسندگان

  • Dan G Matei
  • Nils-Eike Weber
  • Simon Kurasch
  • Stefan Wundrack
  • Mirosław Woszczyna
  • Miriam Grothe
  • Thomas Weimann
  • Franz Ahlers
  • Rainer Stosch
  • Ute Kaiser
  • Andrey Turchanin
چکیده

Self-assembled monolayers of aromatic molecules on copper substrates can be converted into high-quality single-layer graphene using low-energy electron irradiation and subsequent annealing. This two-dimensional solid state transformation is characterized on the atomic scale and the physical and chemical properties of the formed graphene sheets are studied by complementary microscopic and spectroscopic techniques and by electrical transport measurements. As substrates, Cu(111) single crystals and the technologically relevant polycrystalline copper foils are successfully used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.

Free-standing nanomembranes with molecular or atomic thickness are currently explored for separation technologies, electronics, and sensing. Their engineering with well-defined structural and functional properties is a challenge for materials research. Here we present a broadly applicable scheme to create mechanically stable carbon nanomembranes (CNMs) with a thickness of ~0.5 to ~3 nm. Monolay...

متن کامل

Vibration Analysis of Circular Single-Layer Graphene Sheet Using Finite Element Method

Graphene sheets are combined of Honeycombs lattice carbon-carbon bonds which have high natural frequencies, high strength, and high conductivity. Due to important applications of the graphene sheets particularly at higher frequencies, the study of their dynamic behavior is important in this frequency range. From Molecular Dynamics (MD) point of view as the dimensions of graphene sheet incline, ...

متن کامل

A Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment

In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...

متن کامل

Geometric Effects on Nanopore Creation in Graphene and on the Impact-withstanding Efficiency of Graphene Nanosheets

Abstract Single- and multilayer graphene sheets (MLGSs) are projectile-resisting materials that can be bombarded by nanoparticles to produce graphene sheets of various sizes and distributions of nanopores. These sheets are used in a variety of applications, including DNA sequencing, water desalination, and phase separation. Here, the impact-withstanding efficiency of graphene nanosheets and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced materials

دوره 25 30  شماره 

صفحات  -

تاریخ انتشار 2013